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A coarse-grained description of the restricted primitive model is considered in terms of the local charge- and
number-density fields. Exact reduction to a one-field theory is derived, and exact expressions for the number-
density correlation functions in terms of higher-order correlation functions for the charge-density are given. It
is shown that in continuum space the singularity of the charge-density correlation function associated with
short-wavelength charge-ordering disappears when charge-density fluctuations are included by following the
Brazovskii approach. The related singularity of the individual Feynman diagrams contributing to the number-
density correlation functions is cured when all the diagrams are segregated into disjoint sets according to their
topological structure. By performing a resummation of all diagrams belonging to each set a regular expression
represented by a secondary diagram is obtained. The secondary diagrams are again segregated into disjoint
sets, and the series of all the secondary diagrams belonging to a given set is represented by a hyperdiagram. A
one-to-one correspondence between the hyperdiagrams contributing to the number-density vertex functions,
and diagrams contributing to the order-parameter vertex functions in a certain model system belonging to the
Ising universality class is demonstrated. Corrections to scaling associated with irrelevant operators that are
present in the model-system Hamiltonian, and other corrections specific to the RPM are also discussed.
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I. INTRODUCTION

The question of the universality class of the critical point
associated with a separation into ion-dilute and ion-dense
phases in ionic systems has been the subject of an intensive
debate for many years. The studies focused mainly on the
restricted primitive model �RPM� and we shall focus on the
RPM in this work. In the RPM equaly-sized hard spheres
with positive and negative charges of the same magnitude
are dissolved in a structureless solvent �or in vacuum�, and
the system is globally charge neutral. It was predicted theo-
retically �1� that the RPM can phase separate, and the sepa-
ration was observed experimentally and in simulations. Stell
put forward arguments that the RPM critical point belongs to
the Ising universality class already many years ago �2–4�,
and the same conclusion followed later from the mesoscopic
description described in Refs. �5–7�. Earlier simulation re-
sults for the RPM in continuum space were not sufficiently
accurate to allow for definite conclusions concerning the uni-
versality class, however. Moreover, some early experimental
results confirmed the Ising criticality �8,9�, whereas other
results were in conformity with the mean-field criticality
�10–12� or indicated a crossover to the Ising-type critical
exponents unusually close to the critical point �13,14�. In
ternary aquaous solutions crossover to multicritical behavior
was reported �15�, and a tricritical, rather than a critical point
was indeed observed in simulations �16–18� and predicted
theoretically �5,16,19–23� in the RPM with the locations of
the ions restricted to the sites of the simple-cubic lattice. The
first firm prediction of tricriticality for that system appeared
in Ref. �19�, where a strong argument based on symmetry
considerations was given.

The puzzling contradictions described above motivated
careful theoretical, simulation and experimental studies of
criticality in ionic sytems. In simple words, the Coulombic
forces are long range, and as such might lead to the mean-

field �MF� criticality, as noted by Fisher �24�. On the other
hand, screening effects lead to short-range effective forces,
and standard fluid criticality might be expected �4,24�. One
of the important issues is the range of the charge-density
correlations in the critical region, i.e., beyond the infinite
dilution regime �4,24�.

Subsequent precise experiments by Schröer, Wiegand, and
others �25–32� showed that by careful identification and
elimination of various additional effects �chemical instabil-
ity, background scattering� Ising criticality is obtaind in all
the systems for which MF criticality or tricriticalty, or a de-
layed crossover were reported previously. The authors of
Ref. �15� repeated the experiments and found that the previ-
ous observations were associated with long-living metastable
states. After the equilibriation time �days� the Ising criticality
was observed �33�. At present no RPM-like experimental
ionic system deviates from the Ising criticality. Recent simu-
lations �34–39� also strongly support the Ising criticality.

On the theoretical side the earlier arguments by Stell
�3,4�, and the field-theoretic determination of the universality
class, briefly sketched in Refs. �5,6� are still considered as
not fully satisfactory. Since exact analytical calculations are
impossible, as is also the case for the three-dimensional Ising
model, there is a demand for a theory analogous to the
renormalization-group �RG� theory in simple fluids �40,41�.
The latter is restricted to short-range interactions, and is not
directly applicable to the Coulombic forces.

In this work the theory introduced in Ref. �5� is further
developed, and exact derivations as well as technical details
are explained on a formal basis. We start with the mesos-
copic description first proposed in Ref. �5� and described
in more detail in Refs. �7,42�. In the coarse-grained
description local distributions of the ionic species occur with
a probability proportional to the Boltzmann factor
exp�−��MF���x� ,��x���. Here �MF���x� ,��x�� is the grand
potential in the system with the charge and number densities
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constrained to be ��x� and ��x� in an infinitesimal �“mesos-
copic”� volume dx centered at the space position x. It seems
natural to reduce the two-field theory to a one-field theory
depending only on the number-density of ions, which should
be a proper order parameter for the gas-liquid type transition.
However, in the RPM only charges interact, and it is not
possible to perform such a reduction in a simple way. On the
other hand, because there are no interactions between the
masses in the RPM, the field ��x� can be integrated out eas-
ily. In Sec. III we reduce the two-field theory to the one-field
theory of the field ��x�, with the Boltzmann factor �exp�
−�Heff����. The particular feature of the one-field theory is
that the second functional derivative of Heff��� assumes a
minimum for the wave number kb�0 in Fourier representa-
tion, and the higher-order terms ��xA2n�2n�x� have the
property that for low values of the average number density
A4�0 and A2n�0 for n�2. We find exact expressions for
the number-density correlation functions in terms of the
higher-order correlation functions for ��x� in the one-field
theory.

In order to determine the scaling properties of the con-
nected number-density correlation functions we consider the
corresponding Feynman diagrams in the �formal� perturba-
tion expansion in A2n. In Sec. IV we study the two-point
charge-density correlation function G��. In the Gaussian ap-
proximation G̃��

0 �k� is singular for the wave number kb�0.
The singularity is removed beyond the Gaussian approxima-
tion by following the Brazovskii theory �43�. We segregate
all Feynman diagrams for any given connected number-
density correlation function into disjoint sets according to a
prescription described in Sec. V. By summing all diagrams in
each set we obtain a finite expression, which can be repre-
sented by a skeleton diagram with lines representing the
charge-density correlation function. We call such a series of
diagrams “a secondary diagram.” In this way we cure the
artificial singularity of individual diagrams following from

the singularity of G̃��
0 �kb�.

The secondary diagrams are again segregated into disjoint
sets, according to their topological properties, as explained in
Sec. V. A series of the secondary diagrams belonging to a
particular set can be represented by a hyperdiagram. The
hyperdiagrams are associated with the same expressions for
k→0 as the corresponding diagrams in a model system with
the Hamiltonian belonging to the Ising universality class,
which contains also irrelevant operators. We could repeat the
whole procedure of regularization of the hyperdiagrams,
renormalization of the coupling constants and solve the flow
equations describing the evolution of the renormalized cou-
pling constants under changing the length scale, but this has
already been done �40,41� for the model Hamiltonian yield-
ing the same expressions for the vertex functions in the �for-
mal� perturbation expansion. In Sec. V we also describe cor-
rections to scaling specific for the RPM. Section VI contains
a short summary.

II. BACKGROUND

A. Coarse-grained description for the RPM

In the field-theoretic, coarse-grained approach we con-
sider local densities of the ionic species in mesoscopic re-

gions dx around each point x, ���x�, where �= + ,−. For
fixed temperature and chemical potential the probability den-
sity that the local densities assume a particular form �+�x�,
�−�r� is given by �7,42�

p��+
*�x�,�−

*�x�� = 	−1 exp�− ��MF��+
*,�−

*�� , �1�

where

	 =� D�+
* � D�−

* exp�− ��MF��+
*,�−

*�� , �2�

�=1/kT with k the Boltzmann constant and T temperature,
and we introduced dimensionless densities

��
* = ��
+−

3 , �3�

where 
+−= �
++
−� /2 is the sum of radii. In the above
�MF��+

* ,�−
*� is the grand potential in the system where the

local concentrations of the two ionic species are constrained
to be �+

*�r�, �−
*�x�,

�MF��+
*,�−

*� = Fh��+
*,�−

*� + UPM��+
*,�−

*� − ���
x

��
*�x� . �4�

We use simplified notation �x��dx throghout the whole pa-
per. In Eq. �4�Fh is the Helmholtz free energy of the hard-
core reference system, and we shall limit ourselves to the
local-density approximation Fh��+

* ,�−
*�=�dxfh��+

*�x� ,�−
*�x��.

In principle, more accurate approximations for Fh��+
* ,�−

*�
could be adopted. In the local density approximation

�
�2fh

���
*���

* =
��,�

Kr

��
* − ch��*� , �5�

where the first term results from the ideal entropy of mixing,

�* = �+
* + �−

* , �6�

and ch��*� is the volume integral over the hard-sphere con-
tribution to the Ornstein-Zernike direct correlation function.

In this work we focus on the RPM. In the RPM
�2�MF/���

*���
* can be easily diagonalized due to the sym-

metry of the interaction potentials, and the eigenmodes have
a natural physical interpretation. The first eigenmode is the
number-density deviation of ionic species from the most
probable value,

�x� = �*�x� − �0
*, �7�

and the second mode is the local charge-density in e units
�e=e+= �e−��,

��x� = �+
*�x� − �−

*�x� . �8�

The electrostatic energy is

�URPM��� =
�*

2
�

x1

�
x2

��x1�V�x1 − x2���x2� , �9�

�* =
1

T* =
�e2

D

, �10�
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V�x� =
��x − 
���

x
, �11�

and x= �x�. In the following, distances will be measured in

+−=
 units. In Eq. �9� the contributions to the electrostatic
energy coming from overlapping hard spheres are excluded
because of the form of the potential V �see Eq. �11��.

In the field theory introduced above the physical quanti-
ties are obtained by averaging over all fields �+

*, �−
* �or over

� and  in the RPM� with the Boltzmann factor �1�, and the
grand potential � is

− �� = log 	 . �12�

For small amplitudes of the fields � and  the functional �4�
can be expanded about its value �0

MF at the minimum,

��MF = �MF − �0
MF = �2 + �int. �13�

Here �2 denotes the Gaussian part of the functional. In terms
of the eigenmodes the Gaussian part of the functional �13�
assumes the form

��2 =
1

2
�

k
�C̃��

0 �k��̃�k��̃�− k� + C̃
0 �k�̃�k�̃�− k�� ,

�14�

where we simplify the notation for the integrals in the Fou-
rier space �k�� dk

�2��3 . By using �5� we obtain

C̃��
0 �k� = �0

*−1 + �*Ṽ�k� , �15�

and

C̃
0 �k� = �0,2 = 	�

�2fh

��*2	
�=0,�*=�0

*
. �16�

In the continuum-space RPM the Fourier transform of the
potential �11� has the form

Ṽ�k� =
4� cos k

k2 , �17�

where k= �k� is in 
−1 units. The wave number corresponding

to the minimum of the potential Ṽ�k� is kb�0 �5�. The ex-
plicit form of �0,2 depends on the approximation for the
hard-sphere reference system; in any case, in the absence of
short-range attractive forces it is a positive function of �0

*.

Hence,  is a noncritical field. On the other hand, C̃��
0 �k� can

vanish for k�0. The boundary of stability of ��MF in the
��0

* ,T*� phase space is given by

C̃��
0 �kb� = 0. �18�

The critical fluctuations are thus �̃�kb�.
The �int has the expansion

��int��,� = 

m,n

� �
x

�2m,n

�2m�!n!
��x�2m�x�n, �19�

where 
m,n� denotes the summation with 2m+n�3, and �2m,n
denotes the appropriate derivative of fh at �=0 and =0.

B. Ising universality class and scaling

The universality class of a given system is associated with
a particular scaling form of the singular part of the thermo-
dynamic potential in the critical region, or, equivalently, by
the scaling properties of the large-distance part of the con-
nected correlation functions. In particular, the Ising univer-
sality class is represented by the standard �4 theory with the
Hamiltonian

HI��� =
1

2
�

k
�t0 + k2��̃�k��̃�− k�

+ �
x
�− H0��x� +

u0

4!
�4�x�� . �20�

The �renormalized� connected N-point correlation function
for the field � scales in the real-space representation accord-
ing to �40�

GN
R�x1, . . . ,xN;t,u,H� = tN�GN

R�x1t�, . . . ,xNt�;1,u*,Ht−�� ,

�21�

where t, H, and u are the renormalized coupling constants
corresponding to the bare couplings t0, H0, and u0, respec-
tively, and u* is the fixed point of the RG flow of ū��� upon
rescaling the length unit, x→x� for �→0, where ū��=1�
=u �40�. In the case of a magnet t and H correspond to
reduced temperature and magnetic field, respectively. The
two independent critical exponents � and � are related to the
other exponents via scaling relations �40�. In particular, �
=��d−2+� /2 and �=��d+2−� /2.

Our purpose here is to determine the universality class of
the RPM critical point. Thus, we have to study scaling prop-
erties of the correlation functions for the number-density
field �x� near the critical point of the phase separation, i.e.,
in the phase space region where ��=0. It is the correlation
function for large separations, which may lead to divergent
susceptibility and obeys scaling. In determining the univer-
sality class of a critical point one can separate the correlation
function into a long and a short-distance parts, and neglect
the latter. In the next section we construct an effective one-
field theory which allows for a determination of nonlocal
parts of the number-density correlation functions.

III. EFFECTIVE FIELD THEORY

In this section we derive an exact effective Hamiltonian
Heff���, such that the grand potential is given by
�=−kT log�D� exp�−�Heff����. Next we derive exact ex-
pressions for the nonlocal parts of the number-density corre-
lation functions in terms of higher-order correlations for the
field �, with the Boltzmann factor exp�−�Heff����. We also
introduce generating functionals for the relevant correlation
and vertex functions.

A. Derivation of the effective functional

The functional ��MF�� ,� �Eqs. �13� and �4�� can be
split into two parts,
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��MF��,� = ����� + ���,� , �22�

where

������ =
1

2
��C��

0 ��� + 

m=2

�2m,0

�2m�!
1��2m� , �23�

����,� =
1

2
�C

0 �� + 

m,n

� �2m,n

�2m�!n!
�2m�n� , �24�

and where 
m,n� indicates a summation with n�1 and 2m
+n�3. In the real space representation � and  are real
functions. For convenience we use the Dirac brackets nota-
tion for the scalar product

f �g� � �
x

f*�x�g�x� = �
k

f̃�k�g̃�− k� , �25�

and �A � f� denotes the operator A acting on the state �f�. In
particular, when in real-space representation A has a func-
tional form A�x ,x��, then

�A�f� � �
x�

A�x,x��f�x�� . �26�

We introduce a functional of two external fields J�x� and
v�x� by

�	�J,v� =� D�eJ���e−������	��,v� , �27�

where

	��,v� =� Dev��e−����,�. �28�

Because in the pure RPM �no other interactions included�
C

0 �x1 ,x2�=C
0 ��x1 ,x2� �see Eq. �16��, Eq. �24� can be re-

writen in the form

����,� = �
x

�����x�,�x�� , �29�

and we immediately obtain the exact result

log 	��,v� = �
x

����x�,v�x�� , �30�

where

����x�,v�x�� = log�� d��x��e−�����x�,�x��ev�x��x�� .

�31�

The integrand ����x� ,0� in Eq. �30� can be expanded in a
Taylor series with respect to ��x� and we obtain the formal
expression

����x�,0� = 

m=0

�
f2m��0

*�
�2m�!

�2m�x� , �32�

where the explicit forms of f2m��0
*� depend on the form of the

Helmholtz free-energy density of the hard-sphere reference
system. By substituting the above form of 	 into Eq. �27�
we obtain

�	�J,0� = Z	0�J�, 	0�J� =� D�eJ���e−�Heff���,

�33�

where log Z=�xf0��0
*� �log �	�J ,0� is an extensive quan-

tity�,

�Heff��� =
1

2
��C��

0 ��� + 

m=2

� A2m

�2m�!�x
�2m�x� , �34�

C��
0 �x,x�� = C��

0 �x,x�� + f2��0
*���x − x�� , �35�

and

A2m = �2m,0 + f2m��0
*� . �36�

Equations �33�–�36� define the effective functional.
Equation �28� can be written in a more general form, valid

also beyond the RPM �i.e., for nonlocal C
0 � �40,41�

	��,v� = Z
0 · exp�− 


m,n

� �2m,n

�2m�!n!
�

x
�2m�x�

� n

�v�x�n�
�e1/2v�G

0 �v�. �37�

In the above the constant is Z
0 =�Dfe−1/2f �C

0 �f�, and

Z = Z
0 exp�− 


n=3

�
�0,n

n!
�

x

� n

�v�x�n��e1/2v�G
0 �v��v=0.

�38�

Nonvanishing contributions to 	�� ,0� result from an even
number of differentiations in Eq. �37� with respect to v. In
the case of the RPM f �G

0 �f�=G
0 f � f�, and a double dif-

ferentiation with respect to v gives a factor G
0 =1/C

0 . The
Wick theorem allows to represent 	�� ,0� as a sum of all
vacuum Feynman diagrams �no external points� with vertices
�2m,n�2m�x� such that n�1 and 2m+n�3, all at the same
point x. From the vertex �2m,n�2m�x� there emanate n
-lines, and all -lines have to be paired. Lines connecting
different vertices as well as loops represent G

0 . Finally,
each diagram is integrated over x.

log 	�� ,0�=�x����x� ,0� is represented by all con-
nected vacuum diagrams described above �40,41�. ����x� ,0�
is represented by the same diagrams, except that there is no
integration over x. The term proportional to �2m�x� in the
expansion of ����x� ,0� in Eq. �32� is represented by the
sum of all connected diagrams, such that each diagram in the
sum contains a certain number N of vertices �2mj,nj

�2mj�x�,
and 
 j=1

N mj =m. In particular, f2�2�x� is represented by a sum
of all connected vacuum diagrams, where each diagram in
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the sum contains an arbitrary number of vertices �0,n, and a
single vertex �2,k�

2�x�, where k is arbitrary. There are no
zero-loop contributions to f2�2�x�, and the one-loop contri-
butions are shown in Fig. 1. The zero-loop diagrams contrib-
uting to A4�4�x� and A6�6�x� are shown in Fig. 2, and one
loop diagrams contributing to A4�4�x� are shown in Fig. 3.
In these diagrams each thin line emanating from the vertex at
x represents ��x�, thick lines represent G

0 , and the dia-
grams are multiplied by appropriate symmetry factors
�40,41�. A2m is represented by a sum of the corresponding
diagrams with amputated ��x� lines.

The above perturbation approach is convenient for a de-
velopment of approximate theories. Let us compare the
above exact theory with the weighted-field �WF� approxima-
tion developed in Refs. �5,44�. The WF approximation is of
the mean-field type with respect to the field , because the
effective functional is obtained by minimizing ��MF with
respect to  for a given field �. Heff��� given in Eq. �34� has
the same functional form as in the WF theory. Moreover, in
the zero-loop approximation the term f2 vanishes, and the
coefficients A2m reduce to those obtained previously in Ref.
�44�. Thus, in the zero-loop approximation the above exact
effective theory reduces to the WF approximation, as ex-
pected.

In the effective theory derived above we can rewrite
	0�J� in the form

	0�J� = Z�	1�J� ,

	1�J� = e−
m=2A2m/�2m�!�x�2m/�J�x�2m
e1/2J�G��

0 �J�, �39�

where Z�=�Dfe−1/2f �C��
0 �f�, and the charge-density correla-

tion function in the Gaussian approximation, G��
0 , is inverse

to C��
0 ,

G̃��
0 �k� = 1/C̃��

0 �k� . �40�

By applying the Wick theorem we can represent 	1�0� by
vacuum diagrams with “hypervertices” A2m from which
there emanate 2m �-lines. All lines are paired, and the line
connecting vertices at x1 and x2 represents G��

0 �x1 ,x2�. The
name “hypervertex” used in Ref. �44� comes from the form

of A2m in the original, two-field theory �see Eq. �36� and Fig.
2�, but in the effective one-field theory A2m are just usual
vertices. For simplicity, in the rest of this paper we shall use
the name “vertex” for A2m.

B. Stability of the functional Heff

The effective functional of the form �34�was already stud-
ied in the WF theory �7,44�, which is equivalent to the zero-
loop approximation for f2 and A2n. Beyond the WF approxi-

mation the Gaussian correlation function G̃��
0 �k� diverges for

the same wave vector k=kb�0 as found in Ref. �5�, but
along the spinodal line

Tb
* = − �0

* Ṽ�kb�
1 + �0

*f2��0
*�

, �41�

which is shifted compared to that found in the WF theory,

where f2=0 �note that Ṽ�kb��0�. We assume that the de-
nominator is positive for the relevant range of �0

*. For par-
ticular forms of fh this assumption remains to be verified.

Divergent G̃��
0 �kb� for kb�0 indicates that our theory be-

longs to the class of the Brazovskii field theories �43�.
Another important property of our WF theory is the fact

that for low densities, �0
*��tc

* , the vertex A4 becomes nega-
tive, and A2n�0 for n�2 �5,44�. This property leads to a
tricritical point on the sc lattice �44,45�, and to a gas-liquid-
type instability in continuum and some other lattice systems
�45,46�, in agreement with simulation results �17,18,47�.
Based on the WF and the simulation results we focus here on
the general field theory having the property that A4��0

*� be-
comes negative for sufficiently low densities, with A6�0
�7,44�. Within the exact theory developed above this assump-
tion remains to be verified for particular forms of the refer-
ence system. Negative values of A4 for low densities bring
our field theory in the corresponding part of the phase dia-
gram beyond the class of the Brazovskii-type field theories,
where A4�0.

C. Correlation functions in the effective field theory

The correlation functions for the field � can be obtained
in a standard way from their generating functional �	�J ,v�
given in Eq. �27�,

FIG. 2. Zero-loop diagrams contributing to A4�4�x� �a� and
A6�6�x� �b�. Thick lines represent G

0 and thin lines represent �.
Vertices with 2m thin lines and n thick lines represent �2m,n.

FIG. 1. One-loop diagrams contributing to f2�2�x�. Thick lines
and loops represent G

0 and thin lines represent �. Vertices with
2m thin lines and n thick lines represent �2m,n.

FIG. 3. One-loop diagrams contributing to A4�4�x�. Thick lines
and loops represent G

0 and thin lines represent �. Vertices with
2m thin lines and n thick lines represent �2m,n.
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�k1�x1� ¯ �kn�xn��� = 	 1

�	

�k1+¯+kn�	

�J�x1�k1
¯ �J�xn�kn

	
J=0,v=0

,

�42�

and the connected correlation functions are given by �40,41�

�k1�x1� ¯ �kn�xn���con = 	 �k1+¯+kn log �	

�J�x1�k1
¯ �J�xn�kn

	
J=0,v=0

.

�43�

¯�� denotes the average in the original two-field theory.
From �27� and �33� we obtain

�k1�x1� ¯ �kn�xn��� = �k1�x1� ¯ �kn�xn�� , �44�

where ¯� denotes averaging in the effective one-field
theory. The connected correlation function
�k1�x1�¯�kn�xn��con is represented by a sum of all con-
nected diagrams containing external points x1 , . . . ,xn from
which there emanate k1 , . . . ,kn �-lines, respectively, and ver-
tices A2m from which there emanate 2m �-lines. All lines are
paired. A line connecting a vertex or an external point at x1
with a vertex or an external point at x2 represents G��

0 �x1 ,x2�
�40,41�.

Let us consider the number-density correlation functions
defined by

�x1� ¯ �xn��� = 	 1

�	

� n�	

�v�x1� ¯ �v�xn�
	

J=0,v=0
.

�45�

From �27� we have

�x1� ¯ �xn��� =
1

�	
� D�e−������Dn�x1, ¯ ,xn��� ,

�46�

where

Dn�x1, . . . ,xn��� = 	 � n	��,v�
�v�x1� ¯ �v�xn�

	
v=0

. �47�

By using Eq. �37� for local C
0 , in the case of x1�x2

� ¯ �xn we obtain

Dn�x1, . . . ,xn���

= Z
0 · G

0n exp�− 

m,n

� �
x

�2m,n

�2m�!n!
�2m�x�

�n

�v�x�n�
��v�x1� ¯ v�xn�e1/2G

0 v�v��v=0. �48�

When xi=x j for at least one pair of external points, there are
additional contributions to Dn�x1 , . . . ,xn ��� �40,41�. We
shall focus only on the case of x1�x2� ¯ �xn. From the
Wick theorem it follows that in the case of the RPM each
diagram contributing to Dn consists of n disjoint diagrams,
each of them containing a single external point, and of
vacuum diagrams. Thus,

Dn�x1, . . . ,xn��� = 	��,0��
i=1

n

��xi� , �49�

where

��xi� = 

m=0

am

m!
�2m�xi� , �50�

and am are functions of �0
* depending on the form of the free

energy in the hard-sphere reference system. Each term
am�2m�xi� in Eq. �50� is represented by the sum of all con-
nected diagrams containing a single external point xi, and an
arbitrary number N of vertices �2mj,nj

�2mj�xi� that satisfy

 j=1

N mj =m. Equations �49� and �50� are of course immedi-
ately obtained by a direct differentiation of the exact formula
�30�.

By substituting Eq. �49� into Eq. �46� we obtain for x1
�x2� ¯ �xn,

�x1� ¯ �xn��� =
1

	0
� D�e−�Heff�����x1� ¯ ��xn�

= ��x1� ¯ ��xn�� . �51�

The connected correlation function for the number-density
fields can be written in the form

�x1� ¯ �xn���con = ��x1� ¯ ��xn��con

= 

m1=1

� am1

m1!
¯ 


mn=1

� amn

mn!

��2m1�x1� ¯ �2mn�xn��con.

�52�

The above equation shows that for x1�x2� ¯ �xn the con-
nected number-density correlation functions are given in
terms of higher-order charge-density correlation functions
with the Boltzmann factor �exp�−�Heff����. We introduce
for convenience an additional field

��x� = a1�2�x� , �53�

where

a1 = G
0 �−

�2,1

2
+ ¯ � , �54�

and we rewrite Eq. �52� as follows:

��x1� ¯ ��xn��con

= 

m1=1

� am1

a1
m1m1!

¯ 

mn=1

� amn

a1
mnmn!

�m1�x1� ¯ �mn�xn��con

= ��x1� ¯ ��xn��con +
a2

a1
2 �2�x1� ¯ ��xn��con + ¯ .

�55�

Note that ��x1�¯��xn��con is given in terms of
��x1�¯��xm��con with m�n, such that for m�n some of
the external points are identical, and the number of distinct
external points is n. ��x1�¯��xn��con is the dominant con-
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tribution to ��x1�¯��xn��con in the phase-space region
where the large-amplitude fluctuations are strongly damped
by the Boltzmann factor.

The phase separation, on which we focus in this work, is
associated with a long-distance behavior of the number-
density correlation function �x1��x2���con. Contributions
to �x1��x2���con which are proportional to ��x1−x2� are
irrelevant when the behavior of �x1��x2���con for �x1

−x2�→� is studied. Because of that we can approximate the
exact correlation functions �x1�¯�xn���con by
��x1�¯��xn��con. By doing so we neglect only the local
parts of the number-density correlations, because for x1
�x2� ¯ �xn the above two functions are equal. Note,
however that in the mesoscopic, or the coarse-grained theory
we cannot describe the structure for distances comparable to
the size of the ions. Hence, the difference between
�x1�¯�xn���con and ��x1�¯��xn��con represents in fact
the microscopic-scale contribution to the correlation func-
tions, which is irrelevnt for the critical behavior. From now
on we shall limit ourselves to the one field theory and to the
correlation functions ��x1�¯��xm��con, which determine
��x1�¯��xn��con for n�m.

D. Vertex functions and the free-energy functional in the
effective theory

In the one-field theory we introduce an effective generat-
ing functional for the connected correlation functions for the
field � that is defined in Eq. �53�,

log 	eff�w� = log� D�ew���e−�Heff���. �56�

The functional �56� generates in fact also the connected cor-
relation functions for the field �, according to Eq. �55�. It is
convenient to introduce a functional analogous to the free-
energy functional by a Legeandre transform of the above
functional,

− ��eff��� = log 	eff�w� − w��� , �57�

where in Eq. �57� ��x�=� log 	eff�w� /�w�x�. The above
functional can be expanded,

��eff��� = − F1��� +
1

2
��C�����

+ 

n�2

�
x1

¯ �
xn

Fn�x1, . . . ,xn�
n!

��x1� ¯ ��xn� .

�58�

C�� is the inverse to G��, where we introduced the notation

G����x� = ��x���x + �x��con. �59�

In diagrammatic expansion the vertex functions
Fn�x1 , . . . ,xn� are the one-particle irreducible �1PI� parts of
the amputated n-point correlation functions,
��x1�¯��xn��amp

con , up to minus sign for n�3. The 1PI dia-
grams cannot be split into two disjoint diagrams by cutting a
single line. In the diagrams contributing to

��x1�¯��xn��amp
con the lines connected with the external

points are amputated,

��x1� ¯ ��xn��con = �
x�

¯ �
xn

��x�� ¯ ��xn��amp
con

�G���x�,x1� ¯ G���xn,xn� . �60�

The vertex functions Fn�x1 , . . . ,xn� determine the connected
correlation functions ��x1�¯��xn��con, which in turn deter-
mine ��x1�¯��xm��con, i.e., the nonlocal parts of the con-
nected correlation functions for the field . Thus, we have
reduced the two-field theory to the effective one-field theory.

E. Strategy in determining the universality class

The universality class associated with the scaling proper-
ties of the correlation functions ��x1�¯��xn��con could be
inferred from the form of the functional H��� such that

log� D�ew���e−�H��� = log 	eff�w� , �61�

where log 	eff�w� is defined in Eq. �56�. Determination of
the exact form of H��� is not an easy task. Note, however
that we are not interested in the exact form of the connected
correlation functions, because scaling is obeyed only by their
long-distance parts. The latter are generated by the singular
part log 	eff

s of the functional �56�,

log 	eff�w� = log 	eff
s �w� + log 	eff

r �w� , �62�

where log 	eff
r denotes the regular part of the functional. In a

similar way the functional �58� can be separated into the
singular and regular parts, �eff���=�eff

s ���+�eff
r ���, obtained

by the Legeandre transform of log 	eff
s �w� and log 	eff

r �w�,
respectively.

Our strategy in determining the universality class consists
of the following steps. First the connected number-density
correlation functions and their 1PI parts are found within the
perturbation expansion in the vertices A2m. Next we identify
�eff

s ���, the singular part of �eff���, and the vertex functions
generated by �eff

s ���, i.e., those which are relevant in the
critical region. In the last step we find a Hamiltonian Hs���,
such that the Legeandre transform of the functional

log� D�ew���e−�Hs��� �63�

generates the same vertex functions. The scaling behavior of
the vertex functions in the RPM is thus determined by the
form of Hs���. In Sec. V we show that Hs��� has the form
characterizing the Ising universality class.

At the end of this section let us summarize the founda-
tions of the effective theory. The nonlocal parts of the con-
nected number-density correlation functions are given in
Eqs. �52�–�55�. The generating functional for
��x1�¯��xn��con is defined in Eq. �56�, with the effective
Hamiltonian Heff��� given in Eq. �34�.
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IV. ORIGIN OF THE CRITICAL SINGULARITY

In the framework of the above coarse-grained approach

the critical singularity of G̃���0� was first found in Ref. �5� in
the WF approximation. The domain of validity of the equa-

tion for the spinodal line C̃���0�=0 was not determined,
however. Before describing the origin of the critical singu-
larity, we shall briefly summarize the properties of the
charge-density correlation function, G����x����x���x
+�x��con, determined already in Ref. �44�. The form of G��

is crucial for finding the domain of validity of the equation
for the gas-liquid type spinodal line in the phase diagram.
This is because the gas-liquid type phase separation can in

principle be preempted by the charge ordering for C̃���kb�
�0, where C̃���k�=1/ G̃���k�, as is in fact the case on the
simple-cubic lattice �44,45�.

A. G�� in the self-consistent Hartree approximation

The field theory with instability corresponding to kb�0
was first developed by Brazovskii �43� for the �4 theory. The
Brazovskii theory leads to correct behavior of the correlation
functions, i.e., the artificial singularity found on the Gaussian
level is removed. For the RPM we keep terms up to O��6� in
the functional �34�, because for low densities A4�0, and for
stability reasons the functional �34� can be truncated at the
term ��6 in the theory with A6�0. In Ref. �44� the Bra-
zovskii theory for G�� was considered for the RPM on the sc
lattice, where a shift of the line of continuous transitions to
the charge-ordered phase was found. Here we shall briefly
describe the continuum case, where the above transition dis-
appears.

In the one-loop Hartree approximation the correlation
function is given by an infinite series of effectively one-loop
diagrams, shown in Fig. 4 �top�. In Fourier representation a
single loop in the second diagram in Fig. 4 �top� represents
the integral

G0 = �
k

G̃��
0 �k� , �64�

where the integrand G̃��
0 �k� �see Eqs. �40� and �35�� can be

written in the form

G̃��
0 �k� =

T*

�0 + �Ṽ�k�
. �65�

In the above �Ṽ�k�= Ṽ�k�− Ṽ�kb�, where for k=kb Ṽ�k� as-
sumes a minimum, and

�0 =
T*�1 + �0

*f2��0
*��

�0
* + Ṽ�kb� . �66�

Other diagrams in Fig. 4 �top� are products of G0. The self-
consistent approximation is obtained, when in Eq. �64� the
integrand is replaced by the correlation function which is the
result of the whole resummation �Fig. 4, bottom�. The result-
ing equation is then solved self-consistently. In the above
one-loop self-consistent Hartree approximation the k depen-
dence of the correlation function is the same as given in Eq.
�65�, and only the critical parameter �0 is rescaled. We de-
note the rescaled critical parameter by �, and the correlation
function in this approximation by G��

H . The corresponding k
integral of G̃��

H �k� is

G��� � �
k

G̃��
H �k� = �

k

T*

� + �Ṽ�k�
. �67�

The self-consistent equation for G̃��
H �k� assumes the form

�see Fig. 4, bottom, and Ref. �44��

G̃��
H �k� = �C��

0 �k� + G����A4

2
+

A6

23 G�����−1

.

In the theory with the term ��8 included in the effective
Hamiltonian, there is another contribution, proportional to
A8G���3, in the above equation. From the definition �66�of �0

we obtain the temperature corresponding to the singularity of

G̃��
H �kb� at �=0 �recall that Ṽ�kb��0�,

T* = −
�0

*Ṽ�kb�

�1 + G�0��A4

2
+

A6

23 G�0���0
*��1 + �0

*f2��0
*��

.

�68�

The above temperature is larger from zero for G�0� assuming
a finite value, for example in the RPM on the sc lattice �44�.
For G�0�→�, however, T*→0.

In continuum there are two sources of divergency of G���.
The first, unphysical one is present for any � and comes from

the behavior of Ṽ�k� for k→�. The charge-density waves
with k→� would correspond to overlapping hard spheres,
and should not be included. Following the standard proce-

dure �43,48�, we expand �Ṽ�k� in a Taylor series about k
=kb and truncate the expansion in �k=k−kb. The resulting

approximate form agrees with G̃��
H �k� for k�kb, i.e., for

dominant fluctuations, and its behavior for k→� ensures fi-
nite values of G���. In the following we shall consider the
integral �67� regularized as in Ref. �43�,

FIG. 4. �Top� A few diagrams contributing to the charge-charge
correlation function in the one-loop Hartree approximation. �Bot-
tom� Diagrammatic representation of the self-consistent equation
for the charge-charge correlation function. The thick line represents

the correlation function G̃��
H �k�, thin line is the Gaussian correlation

function G̃��
0 �k�, the shaded circle and the bullet represent the ver-

tices −A4 and −A6, respectively, and the k integral is associated
with each loop �see also Fig. 2�.
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Gr��� = �
k

T*

� +
V��kb�

2
�k2 + O��k3�

= T*kb
2/���2�Ṽ��kb�� + ¯ , �69�

where the subscript r stands for “regularized.” Note that for
reasonable regularizations �it is the neighborhood of kb that
gives the relevant contribution to the integral� the value of
Gr��� depends on the regularization procedure only weakly
�dots in the above equation�.

The other, physical divergency of Gr��� occurs only for
�=0 and is associated with the singular behavior of the inte-
grand for k→kb, i.e., with the dominant fluctuations �̃�kb�
�44�. However, the temperature corresponding to �→0 is
T*→0 �see Eqs. �68� and �69��, and for T*�0 we obtain in
turn ��0, hence the charge-density correlation function

G̃��
H �k� remains regular for nonzero temperatures. Instead, a

first-order transition is found for �0�0 �43�. In Ref. �45� the
fluctuation-induced first-order transition to the charge-
ordered phase was identified with formation of an ionic crys-
tal. The fact that the charge-density correlation function re-
mains regular for nonzero temperatures is crucial for the
occurrence of the gas-liquid type singularity in the con-
tinuum RPM.

B. Critical singularity of G��

In this section we describe the origin of the critical singu-

larity of G̃���0�, found already in Ref. �5�. Moreover, based
on the properties of G�� studied in Ref. �44� and summa-
rized above, we show that the equation for the gas-liquid
type spinodal line is well defined for any nonzero tempera-
ture.

Let us first consider the correlation functions
��x1�¯��xn��con. The higher-order contributions to the
number-density correlation functions in Eq. �55� will be con-
sidered later. Contributions to the n-point correlation func-
tion for the field � are given by diagrams contributing to the
2n-point function for the field �, with n pairs of external
points identified, and multiplied by a1

n, where a1 is given in
Eq. �54�. In particular, G�� �Eq. �59�� is given by connected
diagrams of the four-point function for the field �, with the
two pairs of external points identified with each other, and

multiplied by a1
2. The contribution to G̃���0� leading to the

critical singularity is given by an infinite series of diagrams
which are of a form of chains of hyperloops connected by the
vertices A4 �5� �Fig. 5�. The sum of the corresponding geo-
metric series has the form

G̃��
b �k� = 4g̃�k��1 + A4g̃�k��−1a1

2, �70�

where g̃�k� is a Fourier transform of the function represent-
ing the hyperloop, i.e., a sum of all connected diagrams of
the four-point function with two pairs of external points
identified, which cannot be split into two distinct diagrams
by splitting a single vertex A4 into two two-point vertices,
and the sum is divided by 2 �symmetry factor�. In other

words, g�r�, represented graphically by the hyperloop in Fig.
5, has no contributions which are of a form of chains. We
introduced a superscript b to distinguish the function given in
Eq. �70�from the exact form of the correlation function de-
fined in Eq. �59�.

Equation �70� stands a singular contribution to G̃�� for
k→0 either when g̃�0�→� or when

1 + A4g̃�0� = 0. �71�

The above can be satisfied for A4�0. Let us focus on the
question for what temperatures g̃�0� is regular. The lowest-
order approximation for g is represented by the first loop in
Fig. 5�bottom�, and is given by

g̃0�k� =
1

2
� drG��

0 �r�2eikr =
1

2
� dk�G̃��

0 �k��G̃��
0 ��k − k��� .

�72�

G̃��
0 �k� is nonintegrable for �0→0, because for �0=0 G̃��

0 �k�
diverges sufficiently fast when k→kb. Thus, G̃��

02 �k� is non-
integrable as well, and for �0→0 we have g̃0�0�→�. This
singularity is associated with the charge-density waves with

the wave number kb. However, the divergency of G̃���kb� is
removed when the fluctuations are included within the Bra-
zovskii approach described in the previous subsection. In a
consistent approximation the hyperloop in Fig. 5, bottom,
can be written in the form

gH�x1,x2� =
1

2
G���x1,x2�2 + ¯ , �73�

where G���x1 ,x2� is the charge-density correlation function,
and dots indicate all remaining contributions. Because

G̃���k� is regular, g̃H�0� is regular as well, when the integrals
are regularized for k→� in the way described in the preced-

ing subsection. Thus, the only singularity of G̃���0� occurs at
an infinite order in A4 and in this approximation is given by
Eq. �71� with g approximated by gH. The function inverse to
that given in Eq. �70� can be expanded about k=0, and we
obtain

FIG. 5. �Top� Several diagrams contributing to the correlation
function G��

b �x1 ,x2�, with the external points x1�x2 shown as open
circles. Black boxes represent a1. In the approximation correspond-
ing to Eq. �70�, G��

b �x1 ,x2� �represented by the pearl line� is given
by an infinite series of diagrams which have a form of chains of
hyperloops. Only diagrams with the hyperloops connected by the
vertices A4 �shaded circle� are included in G��

b . �Bottom� A few
diagrams contributing to the hyperloop g�x1 ,x2�. The first contribu-
tion to g�x1 ,x2� is g0�x1 ,x2�=G��

0 �x1 ,x2�2 /2.
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C̃��
b �k� =

1

G̃��
b �k�

= c0 + c2k2 + O�k4� , �74�

with c0 and c2 expressed in terms of g̃H�0� and g̃H��0� in a

standard way. Note that the form of C̃��
b �k� for k→0 is the

same as the form of the inverse Gaussian correlation function
in the Landau theory for simple fluids. The above result in-
dicates that in the perturbation theory the separation into two
uniform ion-dilute and ion-dense phases is present at an in-
finite order in A4 for c0=0. The above discussion shows that
in the continuum RPM this separation is not preempted by
the charge ordering.

We conclude this section by stressing that in the perturba-
tion theory we should make a resummation of infinite series
of diagrams twice. The first resummation, in the spirit of the
Brazovskii theory �43�, cures the artificial divergency of the
charge-density correlation function in the Gaussian approxi-
mation. Critical singularity is not exhibited by any individual
diagram, but by an infinite series of diagrams having the
form of chains of hyperloops �Fig. 5�. The singularity is
found only in the phase-space region where A4�0. Note
that in the original functional ��MF �Eq. �13�� the field
�̃�kb� is critical, and the field  is noncritical. Charge-
density fluctuations lead to essentially different roles of both
fields for A4�0—the field � is turned to be noncritical, and
the field , or in fact ���2, becomes critical.

V. UNIVERSALITY CLASS OF THE RPM CRITICAL
POINT

In this section we separate all diagrams contributing to the
vertex functions for the field � into disjoint sets according to
the rules described below. The series of diagrams in each set
is given by an expression that can be represented by a sec-
ondary diagram of a skeleton form. The secondary diagrams
are again segregated into disjoint sets. The series of second-
ary diagrams in each set can be represented by a hyperdia-
gram. We show that the expressions representing the hyper-
diagrams are the same as the corresponding expressions
representing the diagrams in a certain model system belong-
ing to the Ising universality class. The one-to-one correspon-
dence between the hyperdiagrams representing the vertex
functions in the RPM, and the diagrams representing the ver-
tex functions in the model belonging to the Ising universality
class indicates that the singular part of the free-energy func-
tional has the Ising universality class form, up to additional
terms associated with corrections to scaling.

A. Secondary diagrams

In the approximation studied in the previous section gH

can be represented by a “secondary diagram” of the same
topological form as the first diagram on the right-hand side
in Fig. 5 �bottom�, but with the thin line representing
G��

0 �x1 ,x2� replaced by a “thick” line representing
G���x1 ,x2�, as shown in Fig. 6.

Similarly, all diagrams contributing to the connected cor-
relation functions for the field ��x�=a1�2�x�, can be divided

into disjoint sets. Each set consists of one skeleton diagram
�41� and of all diagrams obtained from this skeleton by in-
sertions for any pair of points x� ,x�, connected by a thin line
representing G��

0 �x� ,x��, of subdiagrams which have a form
of diagrams contributing to the two-point function
G���x� ,x��. For each set a series of all its diagrams can be
represented by a secondary diagram. The secondary diagram
has the same topological form as the skeleton diagram, but
all lines representing G��

0 are replaced by the lines represent-
ing G��. In a skeleton diagram there exists no pair of lines
such that by cutting only these lines a subdiagram contribut-
ing to G�� could be extracted. Individual secondary dia-

grams are regular, because G̃���k�n is regular and integrable

when G̃���k� is regularized for k→� as described above. In
the following we shall always consider secondary diagrams.
By doing so we automatically cure the divergency associated

with the unphysical singularity of G̃��
0 �kb�.

Because each vertex A2m has an even number of �-legs,
and in diagrams contributing to ��x1�¯��x2��con an even
number of lines representing G�� is connected with each
external point, all diagrams contributing to
��x1�¯��xn��con are 1PI. The secondary �skeleton� dia-
grams contributing to ��x1�¯��x2��con consist of loops
containing n�2 thick lines, and the loops are connected by
the vertices A2m with m�2. On the other hand, all diagrams
contributing to ��x1�¯��xn��con with x1� ¯ �xn are one
particle reducible �1PR�, i.e., two separate diagrams can be
obtained by cutting a single line.

In the following subsections we consider vertex functions
and the free-energy functional in the perturbation expansion
in the vertices A2m. We shall segregate the corresponding
secondary diagrams into different disjoint sets, associated
with different contributions to the vertex functions. We focus
on the general theory with A4�0 and A2n�0 for n�3. We
first analyze the lowest-order approximation.

B. Perturbation expansion at the zeroth-order in the vertices
A2m with mÐ3

Let us consider diagrams that contain loops connected
only by the vertices A4. We shall first consider a general
vertex part of the form of a loop with n�3 lines. We show
that such vertex parts are negligible in the critical region, and
that the free energy-functional �58� has the same form as in a
model system described by a certain Hamiltonian of the
Gaussian form.

Let us consider a general secondary diagram contributing
to the n-th order vertex function. At the one-loop order we
have

FIG. 6. One-loop secondary diagram contributing to
�2�x1��2�x2��con �LHS�, and the corresponding series of Feynman
diagrams �RHS�. Thick and thin lines represent G�� and G��

0 , re-
spectively, and open, gray, and black circles represent external
points, A4 and A6, respectively.
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Fn
one-loop�x1, . . . ,xn� � G���x1 − x2� ¯ G���xn − x1� ,

�75�

and the corresponding loop is shown in Fig. 7. For
Fn�x1 , . . . ,xn� integrated over all arguments we find at the
one-loop order

�
x1

¯ �
xn

Fn
one-loop�x1, . . . ,xn�

� �
x1−x2

¯ �
xn−x1

G���x1 − x2� ¯ G���xn − x1�

� G̃���0�n = 0. �76�

The last equality follows from the fact that G̃��
0 �0�=0 �see

Eqs. �15� and �17��, and any diagram in the perturbation

expansion of G̃���0� is proportional to some power of

G̃��
0 �0�=0. This is because all diagrams contributing to G̃��

are 1PR. Note that the above property indicates short-range
of the charge-density correlations in the uniform phase. For a
secondary diagram with any number of loops the corre-
sponding contribution to �x1

¯�xn
Fn�x1 , . . . ,xn� is also pro-

portional to G̃���0�=0 for n�3.
Let us consider �eff, the generating functional for the ver-

tex functions Fn �see Eq. �58��. Because fluctuations relevant
for the phase separation vary very slowly in space, let us
focus on ��r�=�=const, in which case we have

��eff��� = − �
x

F1�x�� +
1

2
�

x1

�
x2

C����x��2

+ 

n�2

�
x1

¯ �
xn

Fn�x1, . . . ,xn�
n!

�n. �77�

Let us consider the last term in the above equation. There are

no zero-loop contributions to Fn with n�3 when the hyper-
vertices A2m with m�3 are absent. As shown above, at a
higher number of loops the last term in Eq. �77� vanishes,
and only the first two terms remain. From the resulting form
of Eq. �77� it follows that neglecting the hypervertices A2n
with n�3 is analogous to the Gaussian approximation, pro-
vided that the fluctuations with wave numbers other than k
=0 are disregarded. The role of the n-point vertex functions
Fn�k1 , . . . ,kn�, which for ki→0 behave as �k1

2
¯kn

2 will be
discussed in Sec. V E, where we briefly comment on all the
irrelavant contributions to the vertex functions.

Let us determine the contribution to G�� coming from the
secondary diagrams containing loops with more than two
lines. As an example consider the secondary diagram shown
in Fig. 8 �top�. In Fig. 8 �bottom� the hyperdiagram, denoted
by f�x1 ,x2�, and obtained by a resummation of all diagrams
of the above type is shown. We find

�
x1

�
x2

eik·�x1−x2�f�x1,x2�

= f̃�k�V = G̃��
b �k�2G̃���k�G̃���0�2

��
x2�−x3�

G��
b �x2� − x3��G���x2� − x3�� = 0, �78�

where we used the fact that G̃���0�=0. From Eq. �78� we see

that the above contribution to G̃��
b �k� can be neglected. Simi-

larly, all other diagrams of G̃���k�, containing loops with
more than two lines, are proportional to some power of

G̃���0�=0. Hence, when the hypervertices A2n with n�2
are not included, the singular part of G�� is given by a sum
of secondary diagrams of a form of a chain of loops with
only two lines �Fig. 9�, and the inverse correlation function
can be approximated by Eq. �74�.

At the end let us consider the one-point function, i.e., the
average density. The secondary diagrams contributing to

FIG. 7. A loop with n lines �n�3� contributing to the n-point
vertex function for the field �, Fn�x1 , . . . ,xn�. Lines represent G��.
For the above contribution we have �x1

¯�xn
Fn

one-loop�x1 , . . . ,xn�
� G̃���0�n=0.

FIG. 8. �Top� A secondary diagram contributing to G�� and
containing the loop of the form �75�. Lines represent G��, gray
circles represent A4, and black boxes connecting the external points
with the loops represent a1 �Eq. �54��. �Bottom� A hyperdiagram
obtained after a resummation of all diagrams of the form shown
above. The corresponding expression in Fourier representation is
given in Eq. �78�.
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��x��=a1�2�x�� at the zeroth order in the hypervertices A6

and A8 are shown in Fig. 10, and the corresponding density
shift is given by

��x�� = a1Gr����1 − A4g̃�0� + �− A4g̃�0��2

+ ¯ �− A4g̃�0��n� = G̃��
b �0�F1

0, �79�

where Eq. �67� with G��
H replaced by G��, and Eq. �70� have

been used, and we have introduced

F1
0�x� = F1

0 =
Gr���

4g̃�0�a1

. �80�

Note that F1
0�x� plays a role analogous to the external field.

The above results lead to

��eff��� = − F1
0��� +

1

2
��C��

b ��� , �81�

where F1
0 and C̃��

b �k� are given in �80� and �74�, respectively.
The same form of the free-energy functional is obtained in
simple fluids with the coarse-grained Hamiltonian

�H��� =
1

2
�

k
C̃��

b �k��̃�k��̃�− k� − �
x

F1
0��x� + �Hint,

�82�

with the term Hint neglected.

C. Even and odd secondary diagrams

The above observations indicate that the secondary dia-
grams contributing to the vertex functions for the field � can
be divided into two disjoint sets. In the first set, which we
call the set of even diagrams, any contribution to the vertex
function Fn�x1 , . . . ,xn� is represented by secondary diagrams
such that any pair of points is either connected by an even
number of lines, or is not directly connected. Such diagrams
consist of chains of two-line loops, as in Fig. 9 and in Figs.
11–14 below. The diagrams in the other set contain loops
such that there exist pairs of points connected by an odd
number of lines. In particular, loops of the type shown in Fig.
7, where points x� and x� are connected by a single line

representing G���x�−x��, belong to this set of diagrams. We
have shown that for � independent of the space position such
diagrams give a vanishing contribution to the free energy. In
Sec. V E we shall show that the odd diagrams in which some
pairs of points are connected by three or more �-lines lead to
a modification of the coupling constants in the corresponding
coarse-grained Hamiltonian �82� and to corrections to scal-
ing, but do not change the universality class, which is deter-
mined by the even diagrams.

FIG. 9. Secondary diagrams contributing to G�� �right-hand
side� at the zeroth-order in the vertices A2n with n�2. G��

b is
obtained after a resummation of all diagrams of the above form, and
is represented by the pearl line. Symbols are explained in the cap-
tion of Fig. 8.

FIG. 10. Diagrams contributing to the average density at the
point shown as an open circle, and the hyperdiagram representing
the sum of these diagrams. The black box represents a1 �Eq. �54��.
The pearl line represents G��

b �Eq. �70�� and F1
0 inside the box is

given in Eq. �80�.

FIG. 11. �Top� A secondary diagram contributing to the con-
nected three-point correlation function at the first order in A6 �left�
and the hyperdiagram resulting from the resummation of all dia-
grams of the above form. �Bottom� A diagram contributing to the
connected four-point correlation function at the first order in A8

�left� and the hyperdiagram resulting from the resummation of all
diagrams of the above form. The black square represents A8, the
triangle represents the three-point vertex F3

0, and the open square
represents the four-point vertex F4

0. The other symbols are the same
as in the previous figures.

FIG. 12. �Left� A secondary diagram contributing to the con-
nected three-point correlation function at the first order in A8 and
the hyperdiagram resulting from the resummation of all diagrams of
the above form. The symbols are the same as in the previous
figures.
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Let us return to the function g representing the hyperloop
�see Fig. 5�. Note that except from the secondary diagram of
the same topological form as the first diagram shown in Fig.
5, bottom, all remaining secondary diagrams contributing to
g contain pairs of points connected by an odd number of
lines and belong to the set of the odd diagrams. Hence, the
approximation for g given in Eq. �73� is justified as long as
we limit ourselves to the set of even diagrams.

The functional �81� was obtained by a resummation of all
secondary diagrams with the two-line loops connected only
by the vertices A4. The question which arises at this point is
the role of the vertices A6 and A8. For clarity of presentation
we shall focus in the following subsection only on the even
secondary diagrams. We shall determine the scaling behavior
of the corresponding contribution to the vertex functions.

D. Even diagrams containing vertices A6 and A8

Let us first consider the three- and four-point vertex func-
tions at the first order in the vertices A6 and A8, and at an
arbitrary order in A4. If we include only even diagrams, then
the associated connected correlation functions are shown in
Fig. 11 �left�. By summing the infinite series of all diagrams
of the above form we obtain the hyperdiagrams shown in
Fig. 11 �right�. Any other secondary �i.e., of a skeleton form�
diagram at the first order in A6 or A8, contributing to the
respective correlation functions, belongs to the set of odd
diagrams. The three and four-point vertex functions at the
first order in A6, and A8, respectively, are just given by

F̃3
0�k1,k2,k3� = F3

0 =
A6

a1
3 �83�

and

F̃4
0�k1,k2,k3,k4� = F4

0 =
A8

a1
4 . �84�

Due to the translational invariance in the real space, the Fou-
rier transforms are defined as

�2��d��

i

n

ki�F̃n�k1, . . . ,kn�

= �
x1

¯ �
xn

Fn�x1, . . . ,xn�exp�i

j

n

x jk j� . �85�

The hyperdiagrams on the right in Fig. 11 are of the same
form as the corresponding diagrams contributing to the con-
nected correlation functions generated by the functional �63�
with the Hamiltonian �82�, where

�Hint = �
r
�F3

0

3!
�3�r� +

F4
0

4!
�4�r�� , �86�

when calculated at the first-order in the couplings F3
0 and F4

0.
At the first order in A8 there exists a contribution to the

connected three-point correlation function of the same form
as shown in Fig. 11 �top, left�, but with the vertex A6 re-
placed by A8Gr /2. However, the corresponding diagram be-
longs to the set of diagrams shown in Fig. 12 �left�, where
the number of two-line loops representing g is arbitrary, from
zero to infinity. Similarly, the contribution to the two-point
connected correlation function with one vertex A4 replaced
by A6Gr /2 belongs to the set of diagrams shown in Fig. 13
�left�, and the corresponding contribution with one vertex A4
replaced by A8Gr

2 /23 belongs to the set of diagrams shown in
Fig. 14 �left, bottom�.

Let us consider an arbitrary vertex function for the field �,
and focus on a particular contribution of a form of an even
1PI secondary diagram containing a given number of the
vertices A6 and A8. Such a diagram consists of these vertices
connected by chains of two-line loops, and the loops in the
chain are connected by A4. Some of the chains of loops may
end with the loop representing G, as in Fig. 12 �left�. By
changing the number of loops in the chains we obtain other
diagrams. All diagrams obtained in this way form a set. By a
resummation of all diagrams belonging to this set we obtain

FIG. 14. �Left� Secondary diagrams contributing to the number-
density correlation function at the first order in A8, represented by
the black square. The contributions to G��, given by the infinite
series of such diagrams with all numbers of loops representing gH,
are shown schematically �right� as hyperdiagrams, where the pearl
line represents the bare function �70� and the open square represents
−F4

0.

FIG. 13. A diagram contributing to the number-density correla-
tion function at the first order in A6 represented by the bullet �left�.
The contribution to G��, given by the infinite series of such dia-
grams with all numbers of hyperloops, is shown schematically
�right� as a hyperdiagram, where the pearl line represents the bare
function �70� and the open triangle represents −F3

0 �see Fig. 4�.
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a contribution to the considered vertex function, which can
be represented by a hyperdiagram. The topological form of
the hyperdiagram is given by any member of the set, if the
chains of loops connecting the vertices A6 and/or A8 are
replaced by the pearl lines, as shown in Figs. 11–15.

It is instructive to consider a few examples. The even

secondary diagrams contributing to G̃�� and containing a
single vertex A6 and A8, are shown in Figs. 13 and 14 �left�,
respectively. By summing the infinite series of all diagrams
of the above form we obtain the hyperdiagrams shown in
Figs. 13 and 14 �right�, with the pearl lines representing the
“bare” correlation function �70�. The diagrams contributing
to the connected four-point function at the second order in
A8 are shown in Fig. 15.

All even secondary diagrams can be separated into dis-
joint sets obtained in the way described above. By a resum-
mation of all diagrams belonging to any given set we obtain
a hyperdiagram. For any hyperdiagram contributing to the
vertex function in the RPM there exists a diagram of the
same topological structure and representing the same expres-
sion, contributing to the vertex function in the model given
by the Hamiltonian �82� and �86�, and vice versa. This is just
a topological property related to the possibility of connecting
three- and four point vertices by lines, when the functional
forms of the pearl line in the hyperdiagrams and the line in
the diagrams corresponding to the above Hamiltonian are the
same. We have thus reduced the question of the critical be-
havior of the vertex functions determined by the even dia-
grams to the question of the critical behavior of the system

described by the Hamiltonian �82� with �86�, where C̃��
b �k�,

F1
0, F3

0, and F4
0 are given in Eqs. �74�, �80�, �83�, and �84�,

respectively. We could include also higher-order vertices
A2m with m�4, and we would obtain in the same way ad-
ditional terms ��m in Eq. �86�. However, such terms are
irrelevant in the RG sense �40,41�.

By shifting the field,

� = � −
F3

0

F4
0 , �87�

we can remove the term ��3 in Eq. �86�, and we obtain the
standard form of the coarse-grained Hamiltonian represent-
ing the Ising universality-class, H��� /c2=HI���+const.,
with HI��� given in Eq. �20�, where the two relevant scaling
fields are

H0 = �F1
0 +

F3
0

F4
0c0 −

F3
03

3F4
02�c2

−1 �88�

and

t0 = �c0 −
F3

02

2F4
0�c2

−1, �89�

and u0=F4
0c2

−1. Note that the scaling fields H0 and t0 are
related to the temperature and the chemical potential
�through �0

*� in a somewhat complex way. Moreover, the
values of the above parameters depend on Gr and g̃�k�, which
in turn depend on the regularization procedure of the k inte-

grals of G̃�� and its powers. We shall not study the nonuni-
versal properties in this work.

The contributions of all even diagrams to the vertex func-
tions for the field � are of the same form as the vertex func-
tions determined by the Hamiltonian given in Eq. �20� and
belonging to the Ising universality class. Hence, the scaling
properties are also the same. We need to find out whether the
odd-diagrams contributions to the vertex functions can alter
the scaling properties.

E. Odd diagrams containing vertices A6 and A8

In this section we consider the secondary diagrams con-
tributing to the vertex functions for the field ���2, in which
there exist pairs of points connected by an odd number of
lines representing G��. We focus on the theory with the ver-
tices A4�0 and A2n�0 for n�3. Our purpose is to show
that the odd diagrams give the contributions to the vertex
functions which either scale in the same way as the even
diagrams, or are associated with corrections to scaling. Be-
cause an even number of the �-lines emanates from each
vertex and each external point, and an even number of lines
is amputated from the external points in diagrams contribut-
ing to the vertex functions for �, the vertices connected by
an odd number of lines form closed loops.

1. Irrelavant odd diagrams

In Sec. V B we have already considered loops formed by

single lines, as shown in Fig. 7, where F̃n�k1 , . . . ,kn�
��i

nG̃���ki��k1
2
¯ki

2
¯kn

2 for ki→0. Let us focus on a con-

tribution to F̃n�k1 , . . . ,kn� that is of the form

F̃�ji�
odd�k1 , . . .kn��k1

2j1
¯ki

2ji
¯kn

2jn, where ji=0,1 and 
i ji�0,
and in the corresponding secondary diagrams no pair of
points is connected only by a chain of the two-line g-loops,
and no loops representing G are present. A series of such
secondary diagrams for a given �ji� can be represented by a

FIG. 15. �Top� A secondary diagram contributing to the con-
nected four-point number-density correlation function at the second
order in A8 �black square�. �Bottom� Hyperdiagram representing an
infinite series of all such diagrams. The pearl line represents the
bare function �70�.
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hyperdiagram containing no pearl lines. We have
�x1

¯�xn
F�ji�

odd�x1 , . . . ,xn�=0, because 
i ji�0.
By following the considerations described in the preced-

ing subsection, we can segregate all secondary diagrams con-
tributing to a particular vertex function into disjoint sets. In
the secondary diagrams belonging to each set the vertices
A6, A8 and F�ji�

odd are connected by the chains of the two-line
g-loops. All diagrams in any given set are of the same topo-
logical structure, when the chains of the two-line loops are
replaced by the pearl lines. The series of all diagrams in the
given set is represented by a hyperdiagram. There is a one-
to-one correspondence between the hyperdiagrams described
above, and diagrams obtained in the perturbation expansion
in the theory with the coarse-grained Hamiltonian �82� and
with Hint �86�supplemented with contributions of the form

O�����k1
¯�kn

��
i
nki��i

n�̃�ki�ki
2ji with n�3. Note, how-

ever that in the critical region the terms O��� correspond to
irrelevant operators in the RG sense �41�.

2. Relevant odd secondary diagrams

Let us consider odd secondary diagrams contributing to
the vertex functions for the field �, other than those propor-

tional to G̃���0�=0, which are irrelevant. In such diagrams
there exist closed loops in which neighboring pairs of points,
x1 and x2, are connected by subdiagrams contributing to
G3�x1−x2�= �3�x1��3�x2��. The diagrams contributing to

G3�x1−x2� are shown in Fig. 16. Because G̃���k��k2 for k
→0, and the integrals are regularized for k→� as described

in Sec. IV, the individual diagrams contributing to G̃3�0� are
finite. The series of diagrams of the form shown in the sec-
ond diagram on the RHS in Fig. 15 is also regular for the
same reason. In the theory with A6�0 the series of all dia-
grams shown on the RHS in Fig. 15 is regular for k→0, and

we find G̃3�k�=g3
0+g3

2k2+¯. Note the significant difference
between the pearl line �Fig. 9� obtained after the resumma-
tion of the even diagrams, and the dashed line obtained after
the resummation of the odd diagrams �Fig. 16�. Because
A4�0 and A6�0, only the pearl line can be singular for k
→0. In Fig. 17 �top�, we show a relevant odd secondary
diagram contributing to the two-point correlation function
for the field �. This diagram represents in fact the series of
all secondary diagrams that contain subdiagrams contribut-
ing to G3�x−x�� for each pair of the vertices x and x� con-
nected by the dashed line in Fig. 17. We shall keep the name
“a secondary diagram” for such a series of secondary dia-
grams. The corresponding secondary diagrams contributing
to the hyperloop g �see Sec. IV B, Fig. 5� are shown in Fig.
17 �bottom�, where the irrelevant diagrams are not included.

In this approximation we obtain for G̃��
b �k� the same expres-

sion as given in Eq. �70�, but with g̃�k� given by

g̃�k� = g̃H�k��1 +
A8

2
�

x
G3�x�2eikx� , �90�

where gH is given in Eq. �73�, and G3 is shown in Fig. 16.
For k→0 we obtain the bare two-point correlation function

G̃��
b �k� of the same form as given in Eq. �74�, but with modi-

fied coefficients c0 and c2. Note that the secondary diagrams

contributing to the bare function G̃��
b �k� contain vertices

other than A4, unlike in the case of the even diagrams. Note
also that the secondary diagrams which contain chains of
loops such that the two ends of the chain emerge from the
same vertex, or one end of the chain represents G��� �as is
the case in Fig. 14�, are not included in the bare function
G��

b . As in the case of the even secondary diagrams, only
linear chains, with no chainlike branches, contribute to G��

b .
In Fig. 18we show the contribution to the n-point vertex

function for the field �, F̃n
odd�k1 , . . . ,kn�, of the form

�iG̃3�ki�. Note that G̃3�k�=g3
0+g3

2k2+O�k4� is finite for k

→0, therefore the above contribution to F̃n
odd�0 , . . . ,0�, being

of the form �G̃3�0�n, is nonvanishing as well. Hence, the

above contribution to F̃n is relevant in the critical region, and

should be taken into account. By F̃n
0odd�k1 , . . . ,kn�=Fn

0odd

+O�k2� we denote the contribution to F̃n
odd�k1 , . . . ,kn� which

is given by all odd secondary diagrams such that no pair of
vertices is connected only by a chain of the g-hyperloops and
no loops representing G are present. The vertex part

FIG. 16. Relevant odd secondary diagrams contributing to the
correlation function G3�x1 ,x2�= �3�x1��3�x2��. The dashed line
represents the series of all diagrams of the form shown on the RHS.

FIG. 17. �Top� Relevant odd secondary diagram contributing to
the two-point correlation function for the field �. The dashed lines
represent the sum over all subdiagrams contributing to G3, and the
solid lines represent G��. The gray circles, black squares, open
circles, and black boxes represent A4, A8, the external points, and
a1 respectively. Bottom: secondary diagrams contributing to the hy-
perloop representing g, when the even as well as the relevant odd
diagrams are included, and the vertices A2m with m�4 are
neglected.

FIG. 18. Relevant odd secondary diagram contributing to the
n-point vertex function for the field �. The black squares represent
A8. The dashed line represents the three-point correlation function
G3. Thin lines represent the �amputated� �-lines.
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F̃n
0odd�0 , . . . ,0�=Fn

0odd is relevant in the critical region, and
Fn

0odd should be taken into account in the same way as the
vertices A2n are. Thus, the contributions to any vertex func-
tion, which are relevant in the critical region, consist of the
even secondary diagrams, as well as of the relevant odd sec-
ondary diagrams �those which contain the dashed lines�. Any
relevant 1PI secondary diagram contains vertices A6, A8 and
the vertex parts F3

0odd, F4
0odd, from which there emanate 3 or

4 linear chains of hyperloops respectively, and the chains are
of the form shown in Fig. 17. An example of an odd second-
ary diagram contributing to the four-point connected corre-
lation function is shown in Fig. 19.

As in the case of the even diagrams, we can segregate all
the relevant diagrams �both even and odd� into disjoint sets.
To a given set there belongs a diagram in which particular
pairs of vertices or the vertex parts are connected by the
linear chains of the hyperloops. All secondary diagrams ob-
tained from this particular diagram by changing the number
of the hyperloops in the chains belong to the same set. This
is analogous to the segregation of the even diagrams de-
scribed in Sec. V D. There is a one-to-one correspondence
between the vertex functions in our theory and the vertex
functions obtained in the theory with the coarse-grained
Hamiltonian �82�, when the terms

1

3!
�

k1

¯ �
k3

�2��d��

i

3

ki�F̃3
0odd�k1, . . . ,k3��

i

3

�̃�ki�

�91�

and

1

4!
�

k1

¯ �
k4

�2��d��

i

4

ki�F̃4
0odd�k1, . . . ,k4��

i

4

�̃�ki�

�92�

are added to Hint �Eq. �86��. Because of the form of

F̃n
0odd�k1 , . . . ,kn�, we can separate the relevant contributions,

F3
0odd

3!
�

k1

¯ �
k3

�2��d��

i

3

ki��
i

3

��ki� =
F3

0odd

3!
�

x
��x�3

�93�

and

F4
0odd

4!
�

k1

¯ �
k4

�2��d��

i

4

ki��
i

4

�̃�ki� =
F4

0odd

4!
�

x
��x�4.

�94�

In the remaining contributions the integrands are propor-
tional to O�ki

2� for ki→0. Such contributions to Hint are ir-
relevant in the RG sense �41�. The vertex functions for the
field � scale in the same way as the vertex functions in the
model given by the Hamiltonian �82� with �86�, but with all
the parameters modified according to the above discussion.
In particular, Fn

0→An /a1
n+Fn

0odd.
With higher-order vertices A2m, m�4 included, similar

vertex parts with loops made of subdiagrams contributing to
�5�x1��5�x2��con, etc. would contribute to F3

0, F4
0 in Eq. �86�,

and to the irrelevant operators. Modification of the coupling
constants affects only the nonuniversal properties of the
theory. Corrections to scaling associated with irrelevant op-
erators have been studied before �41�, and are not specific for
the RPM.

Let us summarize the above results. From all the second-
ary diagrams contributing to the vertex function for the field

�, F̃n�k1 , . . . ,kn�, we can distinguish a set of secondary dia-
grams contributing to the “bare” n-point vertex function. To
the above set there belong the vertex A2n /a1

n and the odd
secondary diagrams such that no pair of vertices A2m is con-
nected by the linear chain of the hyperloops representing g
�including the one-loop chains representing gH�. Also, no
loops representing G are present in the diagrams contributing
to the bare vertex function. The bare vertex function has the

form F̃n
bare�k1 , . . . ,kn�=A2n /a1

n+Fn
0odd+O�k2� for k→0,

where Fn
0odd is a real number. The remaining secondary dia-

grams contributing to the vertex function F̃m�k1 , . . . ,km�
consist of the subdiagrams of the form described above, and
these subdiagrams are connected by the chains of the hyper-
loops representing g �including the one-loop chains repre-
senting gH�. All the secondary diagrams contributing to the
n-point vertex function for the field � can be segregated into
disjoint sets. Each set contains all the secondary diagrams
obtained from one particular secondary diagram by changing
the number of the hyperloops in the chains connecting the
subdiagrams that belong to the set representing the bare ver-
tex functions. Also the secondary diagrams obtained from the
chosen diagram by changing the subdiagrams that contribute
to the bare vertex functions belong to the considered set. All

FIG. 19. �Top� A relevant odd secondary diagram contributing to
the four-point connected correlation function for the field �. The
gray circles, black squares, open circles, and black rectangles rep-
resent A6, A8, external points, and a1 respectively. The solid and
dashed lines represent the two and the three-point correlation func-
tions for the field �, G��, and G3, respectively. All diagrams ob-
tained by changing the number of the solid and the dashed-line
loops in the four linear chains belong to the same set of diagrams.
Bottom: A hyperdiagram obtained after the resummation over all
numbers n�1 of the solid-line loops and over 0�m�n−1 dashed-
line loops in each linear chain, and over all subdiagrams contribut-
ing to the bare four-point vertex functions. The pearl-line represents
the series of all linear chains, and the bare four-point vertex func-
tions are represented here as the shaded squares. See text for more
details.
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the secondary diagrams in any given set are of the same
topological structure when the linear chains are replaced by
lines, and the subdiagrams contributing to the bare n-point
vertex function are replaced by vertices from which n lines
emanate. The series of all the secondary diagrams in a given
set can be represented by a hyperdiagram. The hyperdiagram
has the same topological structure as the secondary diagrams
in the set. In the hyperdiagrams the functional form of the
line representing the sum over all numbers of the hyperloops
in the linear chain is 1 / �c0+c2k2� in Fourier representation,
and the n-point hypervertices are of the form A2n /a1

n

+Fn
0odd+O�k2� for k→0. The generating functional for such

vertex functions is obtained from the Hamiltonian �82� with
�86�, that contains also additional, irrelevant contributions to
Hint that yield corrections to scaling.

F. Corrections to scaling specific for the RPM

We found that the connected correlation functions for the
field � scale in the same way as in the Ising universality
class. However, the correlation functions for the number-
density, given in Eq. �55�, also contain other contributions. In
particular, the one and two-point number-density correlation
functions in the RPM assume the forms

�r�� = ��r�� + 

n�1

an

a1
nn!

�n�r��con �95�

and

�r1��r2��con = ��r1���r2��con

+ 

n,m�1



n+m�2

anam

a1
n+mn!m!

�n�r1��m�r2��con,

�96�

respectively, where the averages are obtained with the
Hamiltonian �34�. In Figs. 20 and 21 we show the secondary
diagrams contributing to the next-to-leading order terms in
the above expansions. On the right the hyperdiagrams ob-
tained after the resumation of all such diagrams are shown.
In general, the leading-order correction to the N-point con-
nected correlation function for the field � is given by the
N+1-point connected correlation function, where two of the
external points are identified. Scaling forms of the connected
correlation functions, Eq. �21�, give

GN
R�r1, . . . ,rN;t,u,H�

= �t�N�GNs�r1/�, . . . ,rN/�;H�t�−��

+ �t��N+1��G�N+1�s�r1/�,r1/�, . . . ,rN/�;H�t�−��

+ O��t��N+2��� , �97�

where GNs�r1 /� , . . . ,rN /� ;H�t�−�� is the scaling function.
Consider now the correction term to the grand potential. Be-
cause the relative correction to any connected correlation
function is ��t��, the relative correction to their generating
functional has the same scaling form, and we obtain

��t,H� = �t�2−���s�H�t�−�� + �t���cs�H�t�−�� + ¯ � . �98�

All derivatives of the grand potential can be written in the
form

X � �t�a�1 + �t��Xcs�H�t�−�� + O��t�2��� , �99�

where a is the corresponding critical parameter in the Ising
universality class. The leading-order correction to scaling,
specific for the RPM, is given by the exponent �.

VI. SUMMARY

The theory outlined above is relatively complex compared
to the theory of critical phenomena in simple systems. This

FIG. 20. �Left� Secondary diagrams contributing to the next-to-
leading order term in the expansion of ��r�� �Eq. �95�� at the zeroth
order in the hypervertices A2n with n�2. The external point is
shown as an open circle, gray boxes represent a2 /2, lines represent
G�� and gray circles represent A4. �Right� Hyperdiagrams resulting
from the resummation of all diagrams of the type shown on the left.

FIG. 21. �Left� secondary diagrams contributing to the next-to-
leading order term in the expansion of G�� �Eq. �96�� at the zeroth
order in the hypervertices An with n�4. The external points are
shown as open circles. Black and gray boxes represent a1 and a2 /2,
respectively, lines represent G�� and gray circles represent A4.
�Right� Hyperdiagrams resulting from the resummation of all dia-
grams of the type shown on the left.
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complexity follows from the indirect nature of criticality in
ionic systems. The long-range critical number-density fluc-
tuations in charged systems are not induced by mechanical
interactions. Unlike in systems with short-range interactions,
the phase separation is induced by strong charge-density cor-
relations. Coulombic forces support formation of charge-
ordered structures with a microscopic distance between op-
positely charged neighbors. Individual microscopic states are
charge-ordered with a high probability as predicted theoreti-
cally �49� and seen in snapshots �50–52�, but fluctuations
restore the uniform structure at larger length scales �and large
observation times�. Mathematically the restored disorder is
described within the Brazovskii approach. In our case we
performed a resummation of singular Feynman diagrams
�singularity resulting from charge-ordering� to obtain regular
secondary diagrams. The charge-ordered “living” clusters
that are formed in different microstates interact with each
other with short-range forces, and this observation suggests
standard criticality. In microscopic description interactions
between clusters of various sizes, shapes and orientations
should be considered. The above complexity in our theory is
reflected in the absence of critical singularity in individual
secondary diagrams. The critical instability of the uniform
phase occurs only when an infinite series of secondary dia-
grams contributing to the correlation function
�2�x1��2�x2��con is calculated in the perturbation expansion.
In the diagrams of a form of chains of n loops the correla-

tions with n−1 intermediate points are included. The series
of chains of loops plays an analogous role as the Gaussian
correlation function in simple fluids. The hyperdiagrams with
the lines representing such series play in turn an analogous
role as diagrams in the standard theory of critical phenom-
ena.

From the point of view of the field theory, the above work
concerns the theory with the action of the form �34� with
A4�0 and A2n�0 for n�2, and in Fourier space the action
becomes unstable for the wave number kb�0. The key prop-
erties A4�0 and A2n�0 have been observed within the WF
approximation at low densities for the RPM with the ideal
entropy of mixing �44� and with the Percus-Yevick �53� ref-
erence system. It is plausible that for the exact form of A4
the condition A4�0 is satisfied in the RPM for low densi-
ties, but it remains to be proven. This work shows that the
model for which the above is satisfied belongs to the Ising
universality class.
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